Auxin is a positive regulator for ethylene-mediated response in the growth of Arabidopsis roots.

نویسندگان

  • A Rahman
  • T Amakawa
  • N Goto
  • S Tsurumi
چکیده

The requirement of auxin for the ethylene-mediated growth response in the root of Arabidopsis thaliana seedlings was investigated using two ethylene-resistant mutants, aux1-7 and eir1-1, whose roots have been shown to have a defect in the auxin influx and efflux carriers, respectively. A 50% inhibition of growth (I(50)) was achieved with 0.84 microl liter(-1) ethylene in wild-type roots, but 71.3 microl liter( -1) ethylene was required to induce I(50) in eir1-1 roots. In aux1-7 roots, I(50) was not obtained even at 1,000 microl liter(-1) ethylene. By contrast, in the presence of 10 nM 1-naphthaleneacetic acid (NAA), the concentrations of ethylene required to induce I(50) in eir1-1 and aux1-7 roots were greatly reduced nearly to the level required in wild-type roots. Since the action of NAA to restore the ethylene response in aux1-7 roots was not replaced by IAA, an increase in the intracellular level of auxin is likely to be the cause for the restoration of ethylene response. NAA at 10 nM did not inhibit root growth when applied solely, but it was the optimum concentration to recover the ethylene response in the mutant roots. These results suggest that auxin is a positive regulator for ethylene-induced inhibition in root elongation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arabidopsis ERF1 Mediates Cross-Talk between Ethylene and Auxin Biosynthesis during Primary Root Elongation by Regulating ASA1 Expression

The gaseous phytohormone ethylene participates in the regulation of root growth and development in Arabidopsis. It is known that root growth inhibition by ethylene involves auxin, which is partially mediated by the action of the WEAK ETHYLENE INSENSITIVE2/ANTHRANILATE SYNTHASE α1 (WEI2/ASA1), encoding a rate-limiting enzyme in tryptophan (Trp) biosynthesis, from which auxin is derived. However,...

متن کامل

Jasmonic Acid Enhances Al-Induced Root Growth Inhibition1[OPEN]

Phytohormones such as ethylene and auxin are involved in the regulation of the aluminum (Al)-induced root growth inhibition. Although jasmonate (JA) has been reported to play a crucial role in the regulation of root growth and development in response to environmental stresses through interplay with ethylene and auxin, its role in the regulation of root growth response to Al stress is not yet kn...

متن کامل

Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis.

Strigolactones (SLs) or derivatives thereof have been identified as phytohormones, and shown to act as long-distance shoot-branching inhibitors. In Arabidopsis roots, SLs have been suggested to have a positive effect on root-hair (RH) elongation, mediated via the MAX2 F-box. Two other phytohormones, auxin and ethylene, have been shown to have positive effects on RH elongation. Hence, in the pre...

متن کامل

Genetic dissection of hormonal responses in the roots of Arabidopsis grown under continuous mechanical impedance.

We investigated the role of ethylene and auxin in regulating the growth and morphology of roots during mechanical impedance by developing a new growing system and using the model plant Arabidopsis (Arabidopsis thaliana). The Arabidopsis seedlings grown horizontally on a dialysis membrane-covered agar plate encountered adequate mechanical impedance as the roots showed characteristic ethylene phe...

متن کامل

RCN1-regulated phosphatase activity and EIN2 modulate hypocotyl gravitropism by a mechanism that does not require ethylene signaling.

The roots curl in naphthylphthalamic acid1 (rcn1) mutant of Arabidopsis (Arabidopsis thaliana) has altered auxin transport, gravitropism, and ethylene response, providing an opportunity to analyze the interplay between ethylene and auxin in control of seedling growth. Roots of rcn1 seedlings were previously shown to have altered auxin transport, growth, and gravitropism, while rcn1 hypocotyl el...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 42 3  شماره 

صفحات  -

تاریخ انتشار 2001